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Nonlinear mode phenomenology for sinelGordon breather 
excitations 
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Alamos, New Mexico 87545, USA 

Received 25 July 1980, in final form 15 October 1980 

Abstract. Hamiltonians in one space dimension of the &four and sine-Gordon classes are 
considered, emphasising kink- and breather-like excitations. A calculation of classical 
dynamic structure factors based on a kink ideal gas phenomenology is reviewed in terms of 
the ‘central peaks’ predicted. This phenomenological scheme is extended to include 
breather excitations. It is suggested that, for correlations of appropriate functions, the 
breather excitations can give rise to a low-frequency (‘central’) response from their 
particle-like envelope and a high-frequency response from their internal oscillatory 
motions, in qualitative accord with molecular dynamics simulations. 

1. Introduction 

The statistical mechanics of soliton-bearing systems have become a fashionable subject 
in recent years (see Currie et a1 1980, Bishop 1980b). 

This is partly because it has been appreciated rather generally that nonlinear 
excitations can contribute specifically and distinctively to appropriate thermodynamic 
properties, particularly in low dimensions. Additionally, however, realistic material 
applications have been suggested for some of the more precisely understood nonlinear 
equations. These have been mostly in quasi-one and quasi-two dimensions. 

Here we will be predominantly concerned with two prototype nonlinear wave 
equations in one space dimension: the ‘sine-Gordon’ (SG) and ‘&four’ Hamiltonians 
and equations of motion are (cf Currie et a1 1980) 

2 

H ( S G )  = ha 1 (id i t  + 2 ( 4 n + l -  4 n l 2  + w i  (1 -cos 4”))  

o = 411 -- co4xx  + m i  sin 4 

H(qb-four)= ha 1 n ( i l : , + ~ ( 4 n + ~ - ~ , ) 2 + ~ w i ( ~ 2 - 1 ) 2 ) ,  2a 

n 
(1 . lu)  

(co/wo >> a) ,  
2 

2 

(1 . lb)  

Here h sets the energy scale, a is a lattice spacing with lattice index it, and CO, w o  are the 
characteristic velocity and the frequency respectively. Time and space are denoted by t 
and x respectively. The SG equation in particular is a useful first model for many 
systems (see Bishop 2978). Most recently it has been advocated (e.g. Mikeska 1978, 
1980) to explain the excitation spectrum in an easy-plane classical ferromagnetic or 

( C O / ~ O  >>a). 
2 0 = 4tt - C o 4 x x  + +mi4 (4  - 1) 
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1418 A R Bishop 

anti-ferromagnetic spin chain with easy-plane applied magnetic field (e.g. CsNiF3 or 
(C133)4NMnC13(TMMC)). Equilibrium statistical properties of Hamiltonians (1.1) are 
now well understood (Curric et a1 1980) at low temperatures in terms of contributions 
from an exponentially small density of spatially limited kink excitations (velocity U) 

(1 .2a)  

and from extended, small-amplitude modes (‘phonons’, ‘magnons’, etc.). Although a 
complete numerical solution is available for equilibrium properties from the transfer 
integral technique (Currie et a1 1980), normal mode decomposition as above is not 
rigorously possible except at low temperatures (Bishop 1980b). Thus, although mole- 
cular dynamics simulations (Koehler et a1 1975, Schneider and Stoll 1976, Kerr et a1 
1980) clearly reveal a central role for kinks at higher temperatures, systematic inclusion 
of kink-kink interactions and of anharmonic phonons has not been possible (with some 
partial exceptions-see below). Approximate thermal renormalisation (Bishop 1979, 
Sahni and Mazenko 1979) of the kink creation energy has been reasonably successful in 
treating the main effects on the kink gas. However, long-lived coherent anharmonic 
excitations have proven difficult to accommodate so far even in equilibrium properties 
(see Currie et a1 1980, Bishop 1980b). In the ideal SG system such coherent motions are 
known (e.g. Bullough and Dodd 1978) to be strict soliton modes (frequently termed 
‘breathers’), to be treated on an equal footing with the kinks and phonons, and indeed 
these three modes are sufficient to specify an arbitrary solution, enjoying all the 
remarkable strict soliton properties. These properties will be lost in any real SG system 
because of boundary conditions, lattice discreteness and other perturbations. In other 
Hamiltonians we can expect that breather modes will be the most unstable against these 
perturbations, lacking for example the strong topological stability of kinks. Neverthe- 
less, large-amplitude breathing modes are very evident in deterministic and molecula1 
dynamics studies of a class of non-integrable Hamiltonians such as &four (see D 3). 
Understanding breather contributions is partly academic for static, equilibrium pro- 

perties-at low temperatures a conventional anharmonic phonon perturbation theory 
is equally able to reproduce the exact perturbation expansion results deduced from the 
transfer integral procedure (Bishop et a1 1980). However, if the coherence of the 
anharmonic motions gives rise to distinctive features in the dynamics (as we have 
claimed for certain functions (Stoll et ul 1979); see 9 3) then it is important to take 
account of this (finite lifetime) coherence in building a physically appealing mode 
phenomenology. 

Unlike the case of equilibrium properties, no exact results are possible for dynamic 
response functions, S ( q ,  w ) .  Conventional finite-order hlori expansions or mode- 
mode coupling theories fail (e.g. Aubry 1976) precisely in the regions of (4, w, 7‘) space 
where kink solutions become important. Mode-mode coupling theories have been 
devised (Sahni and Mazenko 1979) which introduce by hand a plausible low-tempzra- 
ture kink distribution, but here also the results are prcjudiced by the assumption of a 
distribution only of kinks, whereas breather modes are observed in molecular dynamics 
to modify kink dynamics seriously. Ultimately ‘iustification’ lies in comparison with 
‘exact’ molecular dynamics (MD) calculations. (Alternative approximate theories have 
been proposed (e.g. Imada 1979, 1980, private communication, Bennett et a1 1980) 
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based on a Fokker-Planck approach rather than a Hamiltonian one.) The situation is 
particularly unclear with regard to the role of coherent ‘breather-like’ modes: such 
anharmonic contributions can probably be represented at low T in infinite-order Mori 
schemes (envelope solitons of the one-dimensional classical Heisenberg chain (Bishop 
1980c) versus Mori schemes (Reiter and Sjolander 1977, 1980)), but physical breather 
signatures are then quite obscure. 

In view of the above circumstances, the notion of a ‘phenomenology’ based on the 
recognition of nonlinear elementary modes with distinct physical signatures has much 
appeal. In the absence of exact results it has become fashionable to place a great deal of 
faith in the simplest form of phenomenology, i.e. using ideal gases of elementary modes 
identified from the deterministic equations of motion (see 9 9  2, 3). We expect that such 
an approach can recover gross general features, although quantitative assessment of 
mode interactions, finite lifetime effects, diffusive behaviour of particle-like excitations, 
etc, must be left to comparisons with careful MD simulations (Schneider and Stoll, in 
preparation, Kerr eta1 1980). This is not the intention of the present work. Rather, we 
wish to develop an ideal gas phenomenology for breather excitations ( Q  3) on the same 
level as has been developed for kinks previously (8 2). 

Our motivation is to substantiate a novel suggestion made by us earlier (Stoll et al 
1979), on the basis of molecular dynamics simulations, that for appropriate (see § 3) 
static and dynamic correlation functions, breathers and not kinks should make 
dominant contributions. Breather modes have a much richer structure than single 
kinks. The two basic characteristics (see Q 3) are (i) a particle-like envelope (translating 
with velocity uB (uB < CO)) and (ii) an internal (for SG, harmonic) oscillation of frequency 
wB (0 < wB < wo).  SG is considered in detail in § 3 (since breather forms are known 
analytically there) and we find that these two characteristics give rise to distinct 
response components in S,, (S, ,  = S,,, + cos a(q, U ) ) :  (i) a central peak (w  - 0) in addition 
to one from kinks (9  2) and (ii) a high-frequency (o - 2wB) response. The results are 
potentially interesting because S,, is suggested (Mikeska 1978) to be relevant for 
correlations measured (Kjems and Steiner 1978) in the quasi-one-dimensional magnet 
CsNiF3 (see also 9 4). 

We begin in § 2 by briefly summarising salient results of ideal gas phenomenologies 
for kinks, which we will need to compare with the breather structure factors obtained 
in § 3. 

2. Kink phenomenology 

The idea of using an ideal ‘relativistic’ (see below) or non-relativistic gas of kinks to 
construct an approximate dynamic structure factor from these configurations has been 
employed by several authors (e.g. Krumhansl and Schrieffer 1975, Varma 1976, 
Kawasaki 1976, Bishop and Krumhansl 1976 unpublished, Mikeska 1978, 1980, 
Theodorakopoulos 1979, Maki 1981) in the &four and SG systems. 

Three types of phenomenology need to be very carefully distinguished, depending 
on the system’s topology and the type of functions being correlated. It is not appro- 
priate to describe these at length here: we refer the reader to Bishop el a1 (1980) for a 
fuller review. Very briefly the classes are for: (i) functions globally sensitive to a kink 
presence, but with restrictions on kink-anti-kink ordering or function values-e.g. 4 
correlations in +four or cosii$ correlations in SG exhibit a predominantly Ising 
character (cf Krumhansl and Schrieffer 1975); (ii) functions globally sensitive to kinks 
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and without restrictions on kink-anti-kink ordering-e.g. 4 correlations in periodic 
potentials such as SG (see Bennett et a1 (1980) for a low-T hydrodynamic central mode 
theory from kinks in a Smoluchowski regime); (iii) functions that are locally kink- 
sensitive, i.e. changed by the presence of a kink only in its vicinity. Examples are 4' for 
&four or cos 4 for SG (see table 1). Here the phenomenology amounts to the results of 
a classical ideal particle gas with 'particles' of the kink mass, except for an extra 
'form-factor' q-dependence, reflecting the kink's structure and the particular cor- 
relation function. Centralpeaks are found which are Gaussian except when damping or  
diffusion is included, in which cases they typically acquire a diffusive Lorentzian 
character (Theodorakopoulos 1979, Bishop et a1 1980). It is class (iii) which is directly 
relevant to us here and which we now summarise for comparison with breather results 
in 9 3. 

Table 1. Kink form factors J g ( Q )  for SG and &four models (equations (1)) for various 
functions F of the field 6 (see S: 2). d = c 0 / u O ,  Q ' q y - ' .  All form-factor integrals 
(equation (2.4)) can be evaluated directly, but any S functions have been omitted. 

( a )  Sine-Gordon: f$K=4 tan-' exp(*x/d). ( b )  +Jour: c++~= tanh(*ix/d) 

F(d) 1 JE (Q)I F(d) I JE (Q)/ 

4% Qr / f k ( Q ) 1  6 QY I J: 
dt I J: (011 dt I J; (Q) I 

____ 
4 2~rQ-'[cosh(&Qd)]-' 4 2ndlsinh(aQd)l-' 

cos I$ 4d(SaQd)lsinh(iaQd)/-' 92 4d(aQd)/sinh(*Qd)l--' 
sin 4d(4aQd)[cosh(taQd)]-' 

In a Hamiltonian approach, we suppose that an arbitrary field configuration 4 (x, t ) ,  
can be decomposed in a 'nonlinear normal mode' representation with an independent 
kink sector &(x, t ) ,  where 

Here xOn and U ,  are the initial position and velocity of the nth kink, and y ,  = 
(1 - v ~ / c ~ ) - ' ' ' ,  Considering the kink contribution to the dynamic structure factor 
SK(q, w )  for a function F ( 4 ) :  

((. . .) indicates thermodynamic averaging), we make the further ansatz that 

F[4K(x, t ) l  IcI 1 F{4Kn[Yn(x -XOn - u n f ) ] } .  
n 

(2.3) 

Assertion (2.3) is only an assumption beyond (2.1) if F is not a linear function of 4 (or 
4x, +(, etc). (. . .) now implies averaging with respect to the kinks' initial positions and 
velocities. There may be correlations between these which can be included at the 
expense of numerical labour. As is usual (e.g. Mikeska 1978, Theodorakopoulos 
1979). however, we consider incoherent scattering from independent kinks. Introduc- 
ing the kink 'form factor' fg(4) by 
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we find easily that 

where nK(T) is the density of kinks (and anti-kinks) (see below). Assuming initial 
positions to be uniformly distributed and the velocity distribution P ( v )  to be that of an 
ideal ‘relativistic’ (cf equation (1)) classical gas (particle mass MK = EK/C;), equation 
(2.5) becomes 

with 

P ( U )  = [ ~ c ~ K ~ ( ~ ) ] - ’ ~ ~  e-av, (2.7) 
where (Y 

In general we should include kink lifetime, damping or diffusion terms in (2.6) 
(especially for non-integrable systems). We do not make use of these refinements here, 
and refer the reader to e.g. Theodorakopoulos (1979), Bishop et a1 (1980). In the 
diffusionless regime, (2.6) becomes 

EK/kB T and K1 is a modified Bessel function. 

or explicitly 

At low T ( a  >> l), equation (2.9) becomes 

(2.9) 

(2.10) 

i.e. the non-relativistic limit in which (2.7) is replaced by the Maxwellian distribution 

pNR(v) = c;’(a/2r)’” exp(-av2/2ci). (2.11) 

Both (2.9) and (2.10) predict a central mode from kinks which may be split in the 
relativistic case (2.9) (see below). fK(q) decays characteristically on the scale of an 
inverse kink width, with Lorentz contraction in the relativistic regime. The effect of the 
form factor on the frequency structure of the central component depends (especially in 
the relativistic regime) on the particular function F of kink coordinates. We list some 
examples in table 1. In particular, note for comparison in 9 3 that with F = cos in SG 

f f , ” ” ( Q )  = -4d ($~Qd) / s inh ($~Qd)  (2.12) 

(omitting a trivial S function, reflecting the long-range order in  COS^). We re- 
emphasise that for some functions in table 1 it will not be possible to assume purely 
incoherent scattering as above, and information about kink separations and kink-anti- 
kink sequencing must be introduced: see the beginning of this section and Bishop er a1 
( 1980). 

It useful to note (Schneider et a1 1979, Bishop et a1 1980) that evolutions of 
appropriate functions of the order parameter are directly related through the governing 
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equations of motion (1). For instance, it is easily shown that for S G ,  S,, (s = sin 4 )  and 
S,, are related by 

S,&, w)/S&+(q, w )  = {(w/fiJo)2-2(d/d2[1 -cos(qa)1)2. (2.13) 

This relationship is completely genera! and allows us to argue (consistently with 
rnolecular dynamics simulations (Schneider et a1 1979, Kerr et a1 1980)) that the 
magnon response in S,, is strongly enhanced in S,,, whereas the central component in 
S,, is strongly depressed in S,, (at small q and w). Interestingly, this continuum limit of 
the ratio (2.13) is precisely reproduced by the simplest incoherent kink phenomenology, 
as will be seen froin (2.12) and table 1. (Equation (2.13) applies also to the magnon 
sectors.) No such simple constraints are possible for S,,-it is most closely related to 
energy density correlations (Bishop et a1 1980). This is satisfactory because we will 
argue in § 3 that breathers can contribute strongly to S,, but not to S,, or S,,. 

Analytic expressions for the kink (plus anti-kink) density are limited to low T 
(S0.2EK) where the following results have been found (e.g. Currie et a1 1980): 

n K (  T)(sG)  = 4(2~)-”~d-‘ ( / . ?EK)”~ exp(-PEK), 

?ZK( T)(@-fOUr) = (6/T)1’2d”(/.?E~)’’2 eXp(-PEK). 

(2.14) 

(2.15) 

At higher temperatures, the ‘effective’ kink energy is renormalised and only approxi- 
mate estimates of this and the consequent modified kink density are available (Bishop 
1979). 

Finally we consider the central peak splitting predicted at higher T by (2.9). Notice 
that low-frequency peaks are predicted centred at *w,(q) where wm = U,( T )q  and U, is 
the maximum of a function g ( y ) :  y = (1 - V ~ / C ; ) - ~ ’ ~ .  From (2.11) and table 1, we see 
that for F = 4 or q5x, g is simply P ( v ) ,  the relativistic ideal gas velocity distribution (2.9). 
For other functions F, the kink form factors are such that g differs from P. Of course, 
whether such central peak splitting will be observed depends sensitively on the 
corrections to any ideal gas picture-mode-mode interactions of various kinds. Also 
the strict cut-offs predicted ( U  = c”)  depend on the literal validity of an ideal gas velocity 
distribution and the Lorentz covariance of the continuum SG,  &four, etc models (cf 
equations (1.1)). The former is mitigated by mode-mode interactions, and the latter by 
discrete lattice effects which are most severe for kink velocities + co because of Lorentz 
contraction and (discrete lattice) renormalisation of the kink energy-molecular 
dynamics simulations do  indeed find some weight in central peaks extending beyond the 
continuum theory cut-off (w = coq)  (e.g. Schneider et a1 1979, Kerr et a1 1980). 
Splitting is clearly observed for (nearly integrable) SG but at best marginally for, e.g., 
&four where collision effects (including kink-breather) are very evident (T R Koehler 
1975 unpublished). 

We also remark that at elevated temperatures it is quantitatively misleading to use 
the bare kink energy E$) =MKc;.  n K ( T )  (in equation (2.5), e:c) is the kink (and 
anti-kink) average density at temperature T. Within an ideal gas framework we must 
use an effective excitation energy ELT) <E:’ even at the lowest T (Koehler et al 1975, 
Bishop 1979). The effective kink energy reduction reflects the interaction between a 
kink and linear phonons (Currie et a1 1980) and other modes. It therefore accom- 
modates some of the grosser deficiencies of a strictly ideal gas approach. In a similar 
way we expect that the effective a in (2.12) is strongly modified. In fact, using E K  = ELTcri 
predicts that any central peak splitting will occur at substantially lower temperatures 
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than would be predicted using a =r PEE’; this is consistent with MD simulations 
(Schneider and Stoll in preparation, Kerr et a1 1980). A further refinement (Trullinger 
and Bishop 1981) is to use ELT3”, an effective kink energy which depends on both T and 
U. In this way, the kink velocity distribution in effect deviates from the ideal gas 
relativistic form, (2.7). 

3. Breather phenomenology 

We have proposed elsewhere (Stoll et a1 1979) that coherent anharmonic phonon 
excitations of a quasi-breather nature play an essential role in the correlations of cos q5 
for the SG dynamics. Molecular dynamics simulations have revealed (Stoll et a1 1979, 
Schneider et a1 1979, Kerr et a1 1980) two distinct features in the excitation spectrum, 
S,,(q, w ) .  These can be qualitatively understood (Stoll et a1 1979) in terms of a 
low-frequency response from the quasi-breather envelope and a high-frequency 
component from internal oscillatioris. Although breathers are shorter-lived than kinks 
on a realistic SG chain (i.e. discrete with periodic boundary conditions) and the statistical 
weighting is much less well understood, in view of the novelty of the above suggestion it 
is worthwhile to assess how much information can be obtained from a breather 
phenomenology at the same level adopted for kinks in § 2. In addition, we can expect 
central peak contributions from kinks also ( 8  2), and it will be helpful to have a guide to 
their relative contributions. 

The ideal SG breather is (Bullough and Dodd 1978) 

where the translation velocity U and initial position xo are conjugate; likewise the 
internal frequency W B  and phase 40 are conjugate. U is restricted to 0 < / U /  < co and w B  
to 0 < wB < W O .  Note that the maximum amplitude A ,  of the breather motion is 

AB = 4 tan-’(wg/wi - 1)’” (3.2) 

with Lorentz-corrected frequency ywB. The breather has a characteristic extension 2dB 
with 

dB=dy-’( l  - ~ : / w i ) - ” ~ .  (3.3) 

Integrating the ~ ~ H a m i l t o n i a n  (1.la) ( h  = 1) with (3.1) gives the breather energy EB as 

(3.4) EB= 1 6 ~ o w 0 y ( 1 - w ~ / w ~ ) ” 2 = 2 E ~ ( 0 ) ( 1 - ~ ~ / w o )  2 
2 1 / 2  y. 

We see that. as w B  + wo,  EB + 0, A B  + 0 and d B  + CC (‘phonon’ limit), whereas, as W B  + 0, 
the breather approaches a full kink-anti-kink profile (AB + 27~, E B  + 2EK, dB + d y - ’ ) .  

To set up a breather phenomenology we will suppose that breathers are uncor- 
related in x o ,  U, &, wB. This is the same level of approximation adopted for kinks. 
Similarly we will take no account of finite lifetimes of the breather excitations:. 

-; In the ideal fully integrable SG system interactions between solitons take place purely through asymptotic 
phase-shifts in the conjugate variables xn. do, leaving t’ and wB unchanged asymptotically, as well as the 
soliton energy. 
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Even this simplest phenomenology is quite complicated in the case of breathers. It 
will therefore be helpful to present the low-temperature non-relativistic form first to 
isolate central features. Considering breathers of frequency wB and correlations in 
F[$], we write (cf D 2) 

sEF(q, wB) 

= ( 2 ~ ) - ~ n ~ (  T; w B )  (J dx dx‘ dt dt’ exp[iw ( t  - t ’ )  - iq (x - x’)] 

X F [ ~ B ( ~ B ; X - V ~ ;  t - u x / c i ) l ~ [ x + x ’ ;  t+tl]), (3.5) 

where we have transformed away xo and $o. Making the transformation of variables 
X I  = x -ut, xz = x’- ut’, t l  = t -vx/co, t2  = t’- vx’/c; and introducing the low- 
temperature velocity distribution PNR(u) (equation (2.1 I)), we find 

2 

scF(q, w ; O B )  

oc; 

= ~ B ( T ;  U B ) ( ~ T ) - ~  J du J dxl J dX2 J dtl J dt2 
-m 

4 NR x Y P (U) exp[iy2(w -qv)(tl- t2)1 exp[-iy2(q - vw/ci)(xl -x2)1 

The example of greatest interest to us is F = cos: 

2 1/2  

(3.7) 
2 ( 0 i / w i  - 1) sech2[xd-’(l - w k / o o )  

{I + ( w i / w i  - 1) sech2[xd-’(l - w i / w o )  

] sin2(wBt) 
] sin’(w~t)}~’ 2 1/2 = I -  

The factor of unity in (3.7) reflects the long-range order in cos and is omitted (as for 
kinks). The remaining structure in (3.7) from the breather profile will be considered in 
more detail shortly. For the moment we suppose that high-frequency breathers 
(wB s wo)  will be dominant at low temperatures in view of their lower creation energies 
(equation (3.4)). For these frequencies it is reasonable to neglect the denominator in 
(3.71, and we define a ‘breather envelope form factor’ (cf table 1 and (2.12)) 

00 

fB(Q)  = 1 df e--iQE sech2([/d) = 2d(&~Qd) /s inh( i~Qd) .  (3.8) 
--m 

With this approximation (3.6) becomes 

sg (9, w ; UB)  
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The separation into envelope and internal motion contributions is now evident if we 
note that 

sin2(oBt) =;[I -cos(2wBt)]. (3.10) 

For, performing the tl integral (say) in (3.9), we have 

J dtt exp[iy2(w -qv)tl] sin2(wBtl) 

(3.11) 
Using (3,11), the t2 and v integrals in (3.9) can be performed. Neglecting all relativistic 
factors y (consistent with our low-T assumption), we find 

S g  (4, w ; wB) 

Several implications follow from this low-temperature phenomenology. 
(i) In view of the Gaussian form of PNR(v), equation (3.12) predicts a Gaussian 

central peak for each breather frequency plus separate components centred at w = 
f 2 W B .  The latter do not have Gaussian form because of the frequency-dependent form 
factor-weight is displaced to /w 1 3 2wB from /w 1 s 20B. 

W O .  We see therefore that the effective q 
in the form factors f B  is greatly enhanced so that, from (3.8), f B  is exponentially small. 
Indeed, if we consider w -0  or *2wB and q finite, the wB dependence in (3.12) is 
- ~ B ( T ;  W B )  exp[-rqd(1 - - ~ 2 / w i ) - ' ] .  The breather contribution to SF is evidently a 
competition between the breather density (which will increase with decreasing creation 
energy, i.e. as wB increases) and the form factor f B  (which increases as wB decreases). 
Furthermore, we can expwt lifetimes to be less for extended (wB + WO) breathers, and 
this will also be part of the competition. Of course the observable structure factor 
S;(q, 0) is a sum over all breathers: 

(ii) Equation (3.12) is only valid for wB 

(3.13) 

(N.B. for quantum SG,  the breather spectrum is discrete, depending on the strength of 
the quantum coupling constant (e.g. Maki and Takayama 1979, Bishop 1980a).) 

(iii) The intermediate structure factor S"'(q, t = 0) = dwS"(q, U )  can be calculated 
exactly using transfer integral techniques (e.g. Bishop 198 l), with the result (classically) 
that 

(3.14) 

This behaviour is partly due to breather excitations (see also § 4), so that (3.14) imposes 
a constraint on the integrated form of (3.12). 

Scc(q, t = 0) a ( p ~ ~ ) - ~  (4, T + 0). 



1426 A R Bishop 

(iv) Without performing detailed integrations, we see from (3.12) that the integra - 
ted high- and low-frequency components of S‘,”(q, w )  should have roughly comparable 
magnitudes with the high-frequency weight -one half the central peak weight. This is 
broadly consistent with molecular dynamics simulations (Stoll et a1 f 979, Kerr et a1 
1980). 

Within approximation (3.12) we might suppose that the greatest contribution, as far 
as the form factor f B  is concerned, comes from the lowest-frequency breather. A closer 
examination of (3.7) shows that this is not the case. The breather profile spends most 
time at its extrema1 values. If we consider sin2(wBf) = 1 and examine the complete 
envelope form factor (i.e. the full form (3,7) in (3.8)), it is easy to show that f B + 0  as 
wB-+ 0 or W O  and maximises for W B  = OJ; : 

w ; = W O /  JZ. (3.15) 

This was already anticipated (Stoll et a1 1979) from the cosine properties since this 
‘most favou~able’ breather has amplitude A B  = T (equation (3.2)). It has energy 
EB(w;) = J 2 E K  and is thus e,xpected to be even slightly less populated than free kinks. 
However, estimates show that (3.15) is not a very strongly selected frequency, so that 
many breathers will contribute substantially and in aggregate dominate kinks at low T. 

It is appropriate to note here that symmetric oscillatory motions (taking positive and 
negative values) such as SG breathers only contribute because we are considering a.n 
eueQ function (cos). Contributions from the breather sector are identically zero for odd 
functions (4, sin 4, etc). This is evident (at arbitrary T )  from (3.6) and is consistent with 
striking differences observed in molecular dynamics simulations (Schneider et a1 1979, 
Kerr et a1 1980). (This property may not hold exactly for asymrnetricpotentials such as. 
4-four-cf the end of this section.) 

Our present understanding of classical breather densities nB(wB; T )  is unfortunately 
incomplete. The difficulties are rather technical and we refer the reader to Bishop 
(1980b) for a discussion. (Reasonable breather densities in a quantum framework have 
been proposed (e.g. Maki and Takayama 1979, Chung 1980), which emphasises the 
quantum lower limit hwo to a breather energy-in realistic materials, defect-limited 
chain lengths will also be important limitations on breather extent.) In this situation it is 
premature to make detailed comparisons of contributions to S,,(q, w )  from breathers 
and kinks (see Q 7). Similarly, we consider it premature to implement the multiple 
integrations necessary to include the full structure in (3.7): we have given the ingre- 
dients for when nB(wB; T )  are available, but our main aim here is to justify the 
qualitative proposals made by Stoll et a1 (1979). It is essential to examine qualitatively 
some of the relativistic effects on the structure predicted by (3.121, by including some 
sensitivity to the ‘most favourable’ breather. Since a breather profile spends most of a 
cycle near the full envelope, we can, for instance, make the plausible approximation 
(under-estimate) of neglecting time dependence in the denominator of (3.7), and define 
a new envelope form factor 

(3.16) 

To calculate S i F ( q ,  w ;  we follow the same steps starting with ( 3 . 3 ,  except that 
we retain the full ‘relativistic’ breather form (3.1) and keep account of all ’y factors, 
After transforming away xo and do, we introduce new (relativistic) variables x1 = 
y ( x  - u t ) ,  xz = y ( x ’ -  vt‘) ,  r l  = y(f -- ux/ci), t2 = y ( t ‘ -  v x ’ / c i ) .  Using the full relativistic 



Sine-Gordon breather excitations 1427 

velocity distribution P ( u )  (equation (2.7)), equation (3.6) is then replaced by 

s:F(q, O B )  

Considering F = cos and adopting approximation (3.15), expression (3.9) becomes 
instead 

s","(q, ; WB) 

(3.18) 

Following the decomposition (3.10), we find, as in (3.11) and (3.12), that the breather 
enuelope gives rise to a central component 

2 x exp[iy(w -qu)(tl- t 2 ) 1  sin ( W B t l )  sin2(wBtz). 

which should be compared with the contribution from kink particles (equation (2.10)). 
The contributions from breather oscillations now occur through the 6 function (cf 
equation (3.11)): 

' ) - 1 q - 1 6 ( u - f i + ( W ,  4 ;  WB)) (3.20) 

where 
2 1 / 2  2 

fi*=-*- I---+- : 2 ;$) / ( I+$$)  
6> 4 4  2 W B (  C O 4  

(3.21) 

We find high-frequency contributions (cf (3.12)) 

(3.22) 

At low temperatures y - ' ( u ) P ( u )  has its maximum at um = 0, so that (3.21) predicts a 
response centred at w,=*2wg as did (3.12). At higher T, however, y- 'P(u)  is 
maximal at u,#O. From (3.21) we see then that the high-frequency response is 
displaced to a frequency which also depends on wavevector q. Specifically, we find after 
a little algebra that (3.21) predicts a response centred at 

(3.23) 

This conclusion depends somewhat on the behaviour of fB, but we do not expect any 
serious qualitative sensitivity. 
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We anticipate that the qualitative features suggested above for SG will also be 
exhibited in other models i f  correlations of appropriately sensitive functions are 
studied. This is less easy to demonstrate than for SG, since analytic breather expressions 
are generally not available. Indeed, breathers only enjoy strict stability in the 
completely integrable SG model. However, very long-lived breather-like excitations 
are observed numerically in a number of similar one-dimensional models (e.g. Aubry 
1974, Kudryavtsev 1975, Klein et a1 1979, Ablowitz et a1 1979). Very precise recent 
studies by Wingate (1980) and Negele and Campbell (1980) are especially persuasive 
for +four. Amplitude and frequency are related (similarly to SG),  except that oscil- 
lations are necessarily asymmetric. Breathers are also very evident in molecular 
dynamics simulations (e.g. T R Koehler 1975, unpublished) of a +four chain: indeed 
they play an important role in determining kink dynamics (unlike SG) .  Central peak 
splitting is unlikely to survive in this non-integrable case, but we do anticipate low- and 
high-frequency responses in correlations of 4’‘‘ ( n  = 1 , 2 , .  , .). 

4. Summary and discussion 

In the preceding sections we surveyed the simplest classical approaches to calculations 
of dynamic structure factors S(q, w ) ,  which explicitly recognise quasi-elementary 
nonlinear modes. We concentrated on one-dimensional models of the sine-Gordon 
(SG) and &four classes, although the basic philosophies are considerably more general. 
In particular, we made use of kink (9  2) and breather (0 3 )  excitations. Both of these 
enjoy a particle-like character leading to ‘central peak’ structure (i.e. weight for w = 0 in 
S(q ,  U ) ) .  However, the extra internal oscillatory degree of freedom in breathers leads 
to additional high-frequency structure in correlations of appropriate field ( 4 )  functions. 
We demonstrated this (9  3) in SG for cos 4 correlations and predicted the extension in, 
e.g., +four for, e.g., 4’ correlations (9  3). 

The use of an ideal gas phenomenology was central to our procedure, but we 
stressed the need for quantitative representation of mode-mode interactions and 
discrete lattice effects. This is especially true of the possibility of central peak splitting, 
following from the pseudo-relativistic form of the equations of motion (1). Kink-kink 
and (especially) kink-breather collisions are observed in molecular dynamics to be 
severe in the non-integrable +-four case, and lifetime corrections to ideal kink gas 
theories (especially those omitting breathers) are essential: no substantial splitting is 
observed (T R Koehler 1975 unpublished, Schneider and Stoll1976). SG (with d >>a)  
exhibits very clear splitting (Schneider et a1 1979, Kerr et a1 1980) because of its near 
integrability. Even there, however, splitting is observed at substantially lower 
temperatures than predicted by a purely ideal relativistic gas; renormalisations of the 
‘particle’s’ effective energy (Bishop 1979) or of the effective velocity distribution 
(Trullinger and Bishop 198 1) are necessary to partially represent mode interactions. In 
the absence of exact theories, detailed assessment of renormalised ideal gas theories 
awaits comparison with careful MD simulations (Schneider and Stoll 1980, in pre- 
paration, Kerr et a1 1980). However, a few further general observations are in order. 

The structure factors we have discussed can all be made consistent with rigorous 
static constraints on J S(q, w )  dw (see Bishop (1981)). These constraints are, however, 
quite weak, and in particular do not give information on the distribution of weight in 
frequency space. Therefore, nonlinear mode interpretations, if their validity can be 
established, are very useful physical guides. Perhaps the most interesting suggestions 
from this point of view are those presented for breathers (0 3). We proposed that SG 



Sine-Gordon breather excitations 1429 

breathers in correlations of cos & give weight at both low and high frequency. Kinks, on 
the other'hand, contribute only to a low-frequency (central) component. It is difficult to 
be precise about the relative contributions from kinks and breathers, because informa- 
tion (see $3)  on equilibrium density (and lifetime) of the latter is even poorer than for 
kinks (which are themselves only understood rigorously at low T ) .  The integrated 
breather density certainly dominates that of kinks at low T (Bishop 1981), but we 
argued in § 3 that breathers of intermediate amplitude are most important. The density 
of breathers of this amplitude should be comparable to that of kinkst and their 
contributions to Scc(q, w )  should also be comparable (cf equations (2.9) and (3.19)). 
However, there are many breather amplitudes around 7~ contributing substantially, and 
for this reason breather contributions should still dominate kink contributions in cos & 
correlations at small q. (Contrast this with expectations for cos ;& correlations (Bishop 
1981).) This prediction is supported by molecular dynamics simulations (Kerr et a1 
1980). These show that pure kink phenomenology ( Q  2) predicts the total central 
weight in S,,(q, w )  quite well, whereas at low q and T, a substantial weight is left 
unaccounted for by the corresponding (table 1) kink theory for S,,(q, U ) .  

It is likely that breather effects can partly be recovered by more conventional 
anharmonic phonon (magnon) perturbation theories, since breathers indeed represent 
the (classical or quantum) anharmonicity-this is explicit for extended (low-amplitude) 
classical breathers which may be reached in low-order perturbation theory, or for 
quantum breathers which are multi-magnon (phonon) bound states (see Bishop 1980a). 
We prefer, however, to emphasise the specific spatial and temporal coherence of 
breathers, especially if large-amplitude breathers are important. At  this time it is not 
clear to what extent conventional multi-magnon (phonon) sum and difference processes 
(D Baeriswyl 1979, private communication, Reiter 1981) are to be considered 
independent of breather contributions, but there is molecular dynamics evidence for 
separate contributions (Schneider and Stoll, in preparation, Kerr et a1 1980). 

It would be tempting to draw conclusions from our results with regard to easy-plane 
magnetic chains such as CsNiF3 or TMMC (e.g. Mikeska 1978, 1980). Much recent 
work has suggested a mapping of these systems onto a continuum SG field. If this is valid 
then we would indeed assert (Bishop 1981) that CsNiF3 is a novel solid state environ- 
ment in which to study breathers (or continuous deformations of these to larger 
out-of-plane spin motions (Bishop 1980c)), whereas TMMC probes kinks. However, it 
is our opinion that further work is needed to substantiate the mapping to any simple SG 

theory, especially for the S = 1 material CsNiF3. Therefore, implications are prema- 
ture. Our results are, of course, directly relevant to classical molecular dynamics 
simulations (e.g. Stoll et a1 1979, Schneider et a1 1979, Kerr et a1 1980, Schneider and 
Stoll, in preparation). 
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+ Although breather densities are not rigorously available, it is certainly reasonable to suppose nB(T;  wB) - 
exp(-PEB) in the same sense that nK-exp(-PE,) (equation (2.14)). 
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Note added. Since completing this work we have received a preprint from Drs T 
Schneider and E Stoll describing detailed molecular dynamics simulations for the SG 

chain. As far as our results here are concerned, the data are broadly in agreement with 
the alternative simulations of Kerr et a1 (1980). Schneider and Stoll also include some 
discussion of two-magnon processes (8  4). In addition, we have received a preprint 
from Drs Takayama and K Maki who describe related ideal gas dynamic structure 
factor calculations from kinks, breathers and two-magnon processes for a quantum SG 
field theory. Inclusion of the breather density ne(T;  w e )  suggested by these authors 
into our formulae will be reported in a future publication. 
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